2. Razmi N, Lazouskaya M, Pajcin I, et al. Monitoring the effect of pH on the growth of pathogenic bacteria using electrical impedance spectroscopy. Results Eng. 2023;20(July):101425. doi:10.1016/j.rineng.2023.101425
3. Drinking-water. World Health Organization (WHO). Published 2019. Accessed September 1, 2021. https://www.who.int/news-room/fact-sheets/detail/drinking-water
4. Chandrashekar S, Vijayakumar R, Chelliah R, et al. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules. 2021;26(2080):1-20. doi:https//doi.org/10.3390/molecules26072080
5. Tessema B, Gonfa G, Mekuria Hailegiorgis S, Workneh GA, Getachew Tadesse T. Synthesis and evaluation of the anti-bacterial effect of modified silica gel supported silver nanoparticles on E. coli and S. aureus. Results Chem. 2024;7(March):101471. doi:10.1016/j.rechem.2024.101471
6. Vital PG, Van Ha NT, Tuyet LTH, Widmer KW. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam. J Water Health. 2017;15(1):155-162. doi:10.2166/wh.2016.173
7. Herschy RW. Water quality for drinking: WHO guidelines. Encycl Earth Sci Ser. Published online 2012:876-883. doi:10.1007/978-1-4020-4410-6_184
8. Widmer K, van Ha NT, Vinitnantharat S, et al. Prevalence of Escherichia coli in surface waters of Southeast Asian cities. World J Microbiol Biotechnol. 2013;29(11):2115-2124. doi:10.1007/s11274-013-1376-3
9. Maroneze MM, Zepka LQ, Vieira JG, Queiroz MI, Jacob-Lopes E. A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Rev Ambient e Agua. 2021;9(3):445-458. doi:10.4136/1980-993X
10. Reid E, Igou T, Zhao Y, et al. The Minus Approach Can Redefine the Standard of Practice of Drinking Water Treatment. Environ Sci Technol. 2023;57(18):7150-7161. doi:10.1021/acs.est.2c09389
11. Domínguez-Tello A, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes. Environ Sci Pollut Res. 2017;24(28):22631-22648. doi:10.1007/s11356-017-9629-6
12. Hossen A, Ahmed F, Saha SS, Mondal MIH. Advantages of ozone disinfection method for water purification over chlorine disinfection. Nat Resour Conserv Res. 2023;6(2):2090. doi:10.24294/nrcr.v6i2.2090
13. Collivignarelli MC. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Published online 2018:1-22. doi:10.3390/su10010086
14. Zou H, Tang H. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water (Switzerland). 2019;11(2). doi:10.3390/w11020258
15. Al-Issai L, Elshorbagy W, Maraqa MA, Hamouda M, Soliman AM. Use of nanoparticles for the disinfection of desalinatedwater. Water (Switzerland). 2019;11(3). doi:10.3390/w11030559
16. Nazar ZO, Al-Musawi NOA. Performance application of ultraviolet disinfection technique for raw water. J Phys Conf Ser. 2021;1895(1):1-13. doi:10.1088/1742-6596/1895/1/012036
17. Ajiboye TO, Babalola SO, Onwudiwe DC. applied sciences Photocatalytic Inactivation as a Method of Elimination of E . coli from Drinking Water. Clin Phytoscience. Published online 2021.
18. Ozores Diez P, Giannakis S, Rodríguez-Chueca J, et al. Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. Water Res. 2020;186:116387. doi:10.1016/j.watres.2020.116387
19. Mane MB, Bhandari VM, Balapure K, Ranade V V. A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants. Ultrason Sonochem. 2020;61(September 2019):104820. doi:10.1016/j.ultsonch.2019.104820
20. Adeeyo AO, Edokpayi JN, Alabi MA, Msagati TAM, Odiyo JO. Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. Clin Phytoscience. 2021;7(1). doi:10.1186/s40816-021-00258-4
21. Kadir DH. Statistical evaluation of main extraction parameters in twenty plant extracts for obtaining their optimum total phenolic content and its relation to antioxidant and antibacterial activities. Food Sci Nutr. 2021;9(7):3491-3499. doi:10.1002/fsn3.2288
22. Nefzi K, Ben Jemaa M, Baraket M, Dakhlaoui S, Msaada K, Nasr Z. In Vitro Antioxidant, Antibacterial and Mechanisms of Action of Ethanolic Extracts of Five Tunisian Plants against Bacteria. Appl Sci. 2022;12(10). doi:10.3390/app12105038
23. da Rosa E, Stopiglia CDO, Machado MM, et al. Phytochemistry Profile, Antimicrobial and Antitumor Potential of the Methanolic Extract of Tabernaemontana catharinensis A DC and Eragrostis plana NEES. Evidence-Based Complement Altern Med. 2024;2024:1-12. doi:10.1155/2024/5513141
24. Mgbeahuruike EE, Salih E, Prévost-Monteiro S, et al. Polyphenol Analysis and Antibacterial Potentials of Twig Extracts of Salix aurita, S. pyrolifolia, and S. caprea Growing Naturally in Finland. Int J Mol Sci. 2024;25(22). doi:10.3390/ijms252211978
25. Endalew SA, Taddese MG, Muhammed M. Evaluation of antioxidant and antibacterial properties of dehydrocostus lactone isolated from Echinops kebericho root. Heal Sci Reports. 2024;7(3). doi:10.1002/hsr2.1990
26. Sequeda-Castañeda LG, Castellanos-Gómez MA, Céspedes-Acuña CLA. Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities. Separations. 2025;12(1):1-24. doi:10.3390/separations12010009
27. Molokoane TL, Kemboi D, Siwe-Noundou X, Famuyide IM, McGaw LJ, Tembu VJ. Extractives from Artemisia afra with Anti-Bacterial and Anti-Fungal Properties. Plants. 2023;12(19):1-16. doi:10.3390/plants12193369
28. Tiwana G, Cock IE. and Enhanced Antibiotic Combinatorial Strategies. Published online 2024.
29. Tsamo DLF, Tamokou JDD, Kengne IC, et al. Antimicrobial and Antioxidant Secondary Metabolites from Trifolium baccarinii Chiov. (Fabaceae) and Their Mechanisms of Antibacterial Action. Biomed Res Int. 2021;2021. doi:10.1155/2021/3099428
30. Nortjie E, Basitere M, Moyo D, Nyamukamba P. Assessing the Efficiency of Antimicrobial Plant Extracts from Artemisia afra and Eucalyptus globulus as Coatings for Textiles. Plants. 2024;13(4). doi:10.3390/plants13040514
31. Ben Hsouna A, Michalak M, Ben Akacha B, et al. Assessment of the phytochemical composition, antimicrobial activity and anti-inflammatory effects of Lobularia maritima extracts on lipopolysaccharide-stimulated RAW 264.7 cells and their capacity to extend the shelf life of raw minced beef. J Funct Foods. 2022;99(August):105327. doi:10.1016/j.jff.2022.105327
32. Salim A, Deiana P, Fancello F, Molinu MG, Santona M, Zara S. Antimicrobial and antibiofilm activities of pomegranate peel phenolic compounds: Varietal screening through a multivariate approach. J Bioresour Bioprod. 2023;8(2):146-161. doi:10.1016/j.jobab.2023.01.006
33. Ogunniran AO, Dauda OS, Rotimi D, Jegede FC, Falodun DJ, Adekunle PO. Nutritional, phytochemical, and antimicrobial properties of Senna siamea leaves. Toxicol Reports. 2024;13(October):101793. doi:10.1016/j.toxrep.2024.101793
34. Salman HA, Yaakop AS, Al-Mustafa A, et al. The dual impact of Jordanian Ephedra alte for inhibiting pepsin and treating microbial infections. Saudi J Biol Sci. 2021;28(11):6245-6253. doi:10.1016/j.sjbs.2021.06.090
35. F. H. Ferdosi M, Kaleem Naseem M, Afzal A, Haider Khan I, Javaid A. Potential antimicrobial compounds in flower extract of Plumeria alba. Arab J Chem. 2023;16(6):104719. doi:10.1016/j.arabjc.2023.104719
36. Kanwal S, Ahmad S, Yasmin Begum M, et al. Chemical Profiling, in-vitro biological evaluation and molecular docking studies of Ruellia tweediana: An unexplored plant. Saudi Pharm J. 2024;32(2):101939. doi:10.1016/j.jsps.2023.101939
37. Alfuraydi AA, Aziz IM, Almajhdi FN. Assessment of antioxidant, anticancer, and antibacterial activities of the rhizome of ginger (Zingiber officinale). J King Saud Univ - Sci. 2024;36(3):103112. doi:10.1016/j.jksus.2024.103112
38. Tahmasebi A, Karami A, Hosseini SM, Afsharifar A, Moghadam A, Biniaz Y. Cytotoxic and antimicrobial activities of Rydingia michauxii methanolic extracts during various growth stages. Clean Eng Technol. 2021;4:100225. doi:10.1016/j.clet.2021.100225
39. Aslam J, Imran Shahzad M, Muhammad Ali H, et al. A multidirectional phytochemical profiling, antimicrobial, antioxidant and toxicity studies of Neurada procumbens L.: A desert medicinal plant. J King Saud Univ - Sci. 2023;35(8):102862. doi:10.1016/j.jksus.2023.102862
40. Naidoo CM, Naidoo Y, Dewir YH, Singh M, Lin J. Phytochemical composition and antibacterial evaluation of Tabernaemontana ventricosa Hochst. ex A. DC. leaf, stem, and latex extracts. South African J Bot. 2023;152:147-164. doi:10.1016/j.sajb.2022.11.026
41. Joshi S, Bhattarai K, Raj A, Bhattarai J, Amatya S, Baral B. Pharmacological Research - Natural Products Validation of ethnopharmacological findings of Aegle marmelos ( L .) Correa through phytochemical screening and bioactivity assay. Pharmacol Res - Nat Prod. 2024;5(October):100114. doi:10.1016/j.prenap.2024.100114
42. Lebeloane MM, Famuyide IM, Dzoyem JP, et al. Influence of selected plant extracts on bacterial motility, aggregation, hydrophobicity, exopolysaccharide production and quorum sensing during biofilm formation of enterohaemorrhagic Escherichia coli O157:H7. South African J Bot. 2024;167:197-208. doi:10.1016/j.sajb.2024.02.022
43. Sultana N, Ruhul-Amin M, Hasan I, Kabir SR, Asaduzzaman AKM. Antibacterial, antioxidant, and anticancer effects of green synthesized silver/silver chloride nanoparticles using Spondias pinnata bark extract. Food Chem Adv. 2024;4(November 2023):100709. doi:10.1016/j.focha.2024.100709
44. Tienaho J, Liimatainen J, Myllymäki L, et al. Pilot scale hydrodynamic cavitation and hot-water extraction of Norway spruce bark yield antimicrobial and polyphenol-rich fractions. Sep Purif Technol. 2024;360(September 2024):130925. doi:10.1016/j.seppur.2024.130925
45. Dejene A, Feyisa Bogale R, Yadeta L, Mohammed Gendo K, Kenasa G, Lealem Berhanu A. Biogenic synthesis of copper oxide nanoparticles using Clausena anisata leaf and Euphorbia abyssinica bark extracts and its comparative study of antibacterial activities. Results Chem. 2024;8(May):101569. doi:10.1016/j.rechem.2024.101569
46. Alyasiri T, Hassan AA, Adil H, et al. The antibacterial and antioxidant activities of combined Equisetum arvense extract with TiO2 nanoparticles in PMAA films. Results Chem. 2024;11(September):101829. doi:10.1016/j.rechem.2024.101829
47. Yun S, Bai J. Synergistic antimicrobial effects of Dryopteris erythrosora extract and mild heat treatment against Staphylococcus aureus. Lwt. 2023;173(September 2022):114260. doi:10.1016/j.lwt.2022.114260
48. Chodankar RN, Patil R, Hogade SA, Patil AG, Acharya A. Evaluation of Mangifera indica, Anacardium occidentale leaf extracts and 0.2% Chlorhexidine gluconate on disinfection of maxillofacial silicone material surface contaminated with microorganisms - An invitro study. J Oral Biol Craniofacial Res. 2024;14(3):301-306. doi:10.1016/j.jobcr.2024.03.014
49. Sonphakdi T, Tani A, Payaka A, Ungcharoenwiwat P. Antibacterial and toxicity studies of phytochemicals from Piper betle leaf extract. J King Saud Univ - Sci. 2024;36(10):103430. doi:10.1016/j.jksus.2024.103430
50. Djappa CET, Onana fils M, Tamsa Arfao A, et al. Cultivability of Escherichia coli and Staphylococcus aureus in the presence of hydroethanolic extracts of Lantana camara stems and leaves: Importance of bioactive compounds in the cellular inhibition process. Sci African. 2024;26(September). doi:10.1016/j.sciaf.2024.e02373
51. Chakraborty D, Arefin P, Bhattacharjee SC, et al. Biological activity of Mesua ferrea (Nageswar) seed extracts: An in vitro and in silico study. Informatics Med Unlocked. 2023;36:101166. doi:https://doi.org/10.1016/j.imu.2023.101166
52. Oncho DA, Ejigu MC, Urgessa OE. Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia. Clin Phytoscience. 2021;7(1). doi:10.1186/s40816-021-00268-2
53. Magnini RD, Nitiéma M, Ouédraogo GG, et al. Toxicity and bacterial anti-motility activities of the hydroethanolic extract of Acacia senegal (L.) Willd (Fabaceae) leaves. BMC Complement Med Ther. 2021;21(1):1-13. doi:10.1186/s12906-021-03348-5
54. Firdausni, Novelina, Putra DP. The activity of holy basil leaves (Ocimum sanctum, L) to microbia food born disease (Bacillus cereus, Staphylococcus aureus and Escherichia coli). J Phys Conf Ser. 2021;1940(1):012057. doi:10.1088/1742-6596/1940/1/012057
55. Infante N, Rodríguez R, Bartolo Y, et al. Biofunctionalization of Cork with Moringa oleifera Seeds and Use of PMA Staining and qPCR to Detect Viability of Escherichia coli. Water. 2021;13(19):2731. doi:https://doi.org/10.3390/w13192731
56. Alsalih Al-Bakri SA, Abed EH, Mohammed MTA, Ajeel EA. Improvement of the Ethanol activity by using leaves extract of Artemisia herb alba against Pseudomonas aeuroginosa. IOP Conf Ser Earth Environ Sci. 2021;779(1):1-8. doi:10.1088/1755-1315/779/1/012026
57. Okla MK, Alatar AA, Al-Amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA. Article antibacterial and antifungal activity of the extracts of different parts of avicennia marina (Forssk.) vierh. Plants. 2021;10(2):1-13. doi:10.3390/plants10020252
58. Hidayah R, Purwanti S, Jamilah J. Anti-bacterial activity of Dayak onions extract (Eleutherine palmifolia) against Salmonella spp and Escherichia coli. IOP Conf Ser Earth Environ Sci. 2021;788(1):1-7. doi:10.1088/1755-1315/788/1/012069
59. Malik A, Najda A, Bains A, Nurzyńska-Wierdak R, Chawla P. Characterization of citrus nobilis peel methanolic extract for antioxidant, antimicrobial, and anti-inflammatory activity. Molecules. 2021;26(14). doi:10.3390/molecules26144310
60. Feng C, Wei T, Qing S, Han F, Tao X. Application of tea polyphenols and their effects on ultrafiltration effluent disinfection and microbial risk. Water (Switzerland). 2021;13(18):1-14. doi:10.3390/w13182559
61. Yunus FT, Suwondo A, Martini. Phytochemical Compound of Garlic (Allium sativum) as an Antibacterial to Staphylococcus aureus Growth. IOP Conf Ser Mater Sci Eng. 2021;1053(1):012041. doi:10.1088/1757-899x/1053/1/012041
62. Pitopang R, Udayana RADS, Pratiwi AD, Ananda M, Harso W, Ramawangsa PA. Antibacterial activities of Etlingera flexuosa AD Poulsen (Zingiberaceae) from Central Sulawesi on Staphylococcus aureus and Escherichia coli. IOP Conf Ser Earth Environ Sci. 2021;743(1):1-9. doi:10.1088/1755-1315/743/1/012065
63. Abdul Rasyid Zarta, et al. 2019. Aktifitas Anti Bakteri Beberapa Tumbuhan Obat Hutan Etnis Kutai Terhadap Streptococcus mutans dan Escherichia coli. Bul LOUPE. 2019;15 No. 01.
64. Suhartati T, Wulandari Z, Wulandari M, Yandri, Hadi S. Identification and antibacterial activity of flavonoid compounds from wood branches of the pudau plant (Artocarpus kemando Miq.). J Phys Conf Ser. 2021;1751(1). doi:10.1088/1742-6596/1751/1/012095
65. Fitriah F, Mappiratu M, Prismawiryanti P. Uji Aktivitas Antibakteri Ekstrak Daun Tanaman Johar (Cassia Siamea Lamk.) Dari Beberapa Tingkat Kepolaran Pelarut. Kovalen. 2017;3(3):242. doi:10.22487/j24775398.2017.v3.i3.9333
66. Vahedi MM, Asghari S, Tajbakhsh M, Mohseni M. Preparation of Some New Pyrazolo[1,5‐a]pyrimidines and Evaluation of Their Antioxidant, Antibacterial (MIC and ZOI) Activities, and Cytotoxic Effect on McF‐7 Cell Lines. Chem Biodivers. 2023;20(10). doi:10.1002/cbdv.202301146
67. Olawale E, Steve K, Sunday AA, David I. Genomic Investigation on the Antimicrobial Activities and Toxicological Studies of Andrographis Paniculata (Vinegar) Leaf and Stem on Ed Human Pathogens. Int Res J Mod Eng Technol Sci. Published online 2023. doi:10.56726/irjmets43735
68. Nișca A, Ștefănescu R, Stegăruș DI, Mare AD, Farczádi L, Tanase C. Phytochemical Profile and Biological Effects of Spruce (Picea Abies) Bark Subjected to Ultrasound Assisted and Microwave-Assisted Extractions. Plants. 2021;10(5):870. doi:10.3390/plants10050870
69. McLeod SM, Carter N, Huband MD, Traczewski MM, Bradford PA, Miller AA. Sulbactam-Durlobactam Susceptibility Test Method Development and Quality Control Ranges for MIC and Disk Diffusion Tests. J Clin Microbiol. 2024;62(1). doi:10.1128/jcm.01228-23
70. Ahmad R. Krisis Air Bersih: Ancaman Terhadap Kesehatan Masyarakat. Padang: CV Luminary Press Indonesia; 2025. ISBN: 978-623-89952-3-3. https://www.luminarypress.id/product/krisis-air-bersih-ancaman-terhadap-kesehatan-masyarakat/
- Abstract viewed - 31 times
- PDF downloaded - 30 times
Downloads
Affiliations
Rahwan Ahmad
Poltekkes Kemenkes Maluku
Prasetyawati Prasetyawati
Poltekkes Kemenkes Maluku
Farha Assagaf
Poltekkes Kemenkes Maluku
Khartini Kaluku
Poltekkes Kemenkes Maluku
How to Cite
Opportunities of Natural Plant Materials as Alternative Antibacterials in Drinking Water Disinfection: Review Article
Vol 16 No 1 (2025): Jurnal Kesehatan Terpadu (Integrated Health Journal)
Submitted: May 6, 2025
Published: Jun 26, 2025
Abstract
Various efforts to kill pathogenic bacteria in water with safer and more economical disinfectants continue to be pursued. The presence of antibacterial agents in plants can be a promising alternative to natural disinfection. This review discusses the use of natural materials as safer and more economical alternative disinfectants in the water disinfection process. Methods, This is a narrative review using sources from the ProQuest database. The key terms “Extracts AND Plants AND "Natural Compounds" AND "secondary metabolites" AND Antibacterial AND Pathogens AND water AND Escherichia coli” were used. Of the 45 studies found during the search phase, 12 were eligible for inclusion in this review. Results, This study shows that natural Plant Extracts have many uses not only as food ingredients but also as protection against various infectious diseases. Plant extracts as natural ingredients have active antibacterial compounds such as tannins, alkaloids, flavonoids, saponins and phenols which are sourced from seeds, flowers, leaves, bark and roots. Active compounds in plants can reduce or even eliminate pathogenic bacteria in water. Conclusion, Natural plant extracts have compounds that can kill pathogenic bacteria in water. Further studies on the use of natural plant extracts need to be carried out as alternative water disinfection materials that are easy to obtain, safe and economical.